Latest Research

Microfluidic-assisted analysis of antibiotic susceptibility for mixed samples

Abstract

“Antimicrobial resistance is an increasing problem on a global scale. Rapid antibiotic susceptibility testing (AST) is urgently needed in the clinic to enable personalized prescriptions in high-resistance environments and to limit the use of broad-spectrum drugs. Current rapid phenotypic AST methods do not include species identification (ID), leaving time-consuming plating or culturing as the only available option when ID is needed to make the sensitivity call. Here we describe a method to perform phenotypic AST at the single-cell level in a microfluidic chip that allows subsequent genotyping by in situ FISH. By stratifying the phenotypic AST response on the species of individual cells, it is possible to determine the susceptibility profile for each species in a mixed sample in 2 h. In this proof-of-principle study, we demonstrate the operation with four antibiotics and mixed samples with combinations of seven species.

a A cartoon of the microfluidics setup with the mixed species loaded on the chip. b Time-lapse phase-contrast images of the cells in the traps when grown in media with (top) and without (bottom) antibiotics. c Fluorescence images of the bacteria with ssDNA probes targeting the ribosomal RNA of specific bacteria for species identification. d Analysis of time-lapse stacks and species ID using deep learning for segmenting and tracking cells. e Detection of AST profiles for individual pathogens at a given antibiotic concentration. Part of Fig. 1a created using www.biorender.com.” Reproduced under a Creative Commons Attribution 4.0 International License from Kandavalli, V., Karempudi, P., Larsson, J. et al. Rapid antibiotic susceptibility testing and species identification for mixed samples. Nat Commun 13, 6215 (2022). https://doi.org/10.1038/s41467-022-33659-1.

 

Figures and the abstract are reproduced from N. Pacocha, M. Zapotoczna, K. Makuch, J. Bogusławski and P. Garstecki, Lab Chip, 2022, Advance Article , DOI: 10.1039/D2LC00234E under a Creative Commons Attribution 4.0 International License.

Read the original article: Rapid antibiotic susceptibility testing and species identification for mixed samples

Pouriya Bayat

Published by
Pouriya Bayat

Recent Posts

Microfluidics Reveal Iron Deficiency Leads to More Deformable Red Blood Cells

Red blood cell (RBC) deformability, the ability of RBCs to squeeze through tiny capillaries, is…

June 27, 2025

A Reconfigurable Microfluidic Platform for Sample-Efficient Antibody Fc Biomarker Discovery

Precise diagnosis of infectious diseases is often hindered by a lack of accessible biomarkers that…

June 17, 2025

Ultrafast and Scalable CAR-T Manufacturing Using Microfluidics

Chimeric antigen receptor T-cell (CAR-T) therapy has reshaped the treatment landscape for hematologic cancers, but…

June 12, 2025

Compartmentalized perfusion enables precise control of microenvironments in cardiac microfluidics

In complex tissue environments, cells constantly interact with dynamic chemical signals, many of which are…

May 27, 2025

Microfluidic model shows α‑Synuclein spreads backward along axons

Lewy bodies -intracellular aggregates rich in α‑Synuclein (αSyn)- appear in a stereotyped pattern as Parkinson’s…

May 3, 2025

AI-Enabled Microfluidic Device for Rapid CD4+ T Cell Counting in Whole Blood

CD4+ T cell counts are essential for diagnosing and monitoring diseases like HIV, cancers, and…

April 7, 2025