Latest Research

Microfluidic scale-down bioreactor for informed large-scale production

Scale-down reactors are essential for generating data on small scale and applying the observed improvement to larger and industrial scales. Microfluidic devices can be of great use in this sense. The reaction conditions could be carefully monitored while the volume of the reaction is scaled down to a few microliters to find the optimal reaction conditions. In this recent paper published in Biotechnology and Bioengineering, researchers microfabricated a microfluidic chip as a proof of concept for monitoring the growth of Corynebacterium glutamicum at oscillating pH values.

“Traditionally, scale-down systems at the laboratory scale are used to analyze the effects of fluctuating pH values on strains and thus process performance. Here, we demonstrate the application of dynamic microfluidic single-cell cultivation (dMSCC) as a novel scale-down system for the characterization of Corynebacterium glutamicum growth using oscillating pH conditions as a model stress factor. “, the authors explained.

“Design of the microfluidic chip for the dynamic cultivation of single cells and microcolonies under three environmental conditions. (a) dMSCC (dynamic microfluidic single-cell cultivation) chip with three inlets and one outlet per cultivation unit. (b) Illustration of the dMSCC design with parallel arrays of cultivation chambers. The three zones are separated by a cultivation array-free zone with a width of 400 µm. (c) Monolayer growth chambers. (d) Flow pattern at different cultivation conditions in dMSCC.” Reproduced under Creative Commons Attribution 4.0 International License from Täuber, S.Blöbaum, L.Steier, V.Oldiges, M., & Grünberger, A. (2022). Microfluidic single-cell scale-down bioreactors: A proof-of-concept for the growth of Corynebacterium glutamicum at oscillating valuesBiotechnology and Bioengineering1– 16.

“A systematic pH oscillation study was performed with varying relative oscillation ratios, total interval durations, and different pH oscillation amplitudes. The results showed a significant effect of the different pH oscillations on the growth rate of C. glutamicum. The experiments were used to demonstrate that the presented microfluidic system can be used in the future as a scale-down tool and to show which information can be obtained by these systems compared to two-CR systems.“, the authors explained.

The figures and the abstract are reproduced from Täuber, S.Blöbaum, L.Steier, V.Oldiges, M., & Grünberger, A. (2022). Microfluidic single-cell scale-down bioreactors: A proof-of-concept for the growth of Corynebacterium glutamicum at oscillating valuesBiotechnology and Bioengineering1– 16https://doi.org/10.1002/bit.28208 under Attribution 4.0 international (CC BY 4.0) licences.

Read the original article: Microfluidic single-cell scale-down bioreactors: A proof-of-concept for the growth of Corynebacterium glutamicum at oscillating pH values Sarah Täuber,Luisa Blöbaum,Valentin Steier,Marco Oldiges,Alexander Grünberger

Pouriya Bayat

Published by
Pouriya Bayat

Recent Posts

Microfluidics Reveal Iron Deficiency Leads to More Deformable Red Blood Cells

Red blood cell (RBC) deformability, the ability of RBCs to squeeze through tiny capillaries, is…

June 27, 2025

A Reconfigurable Microfluidic Platform for Sample-Efficient Antibody Fc Biomarker Discovery

Precise diagnosis of infectious diseases is often hindered by a lack of accessible biomarkers that…

June 17, 2025

Ultrafast and Scalable CAR-T Manufacturing Using Microfluidics

Chimeric antigen receptor T-cell (CAR-T) therapy has reshaped the treatment landscape for hematologic cancers, but…

June 12, 2025

Compartmentalized perfusion enables precise control of microenvironments in cardiac microfluidics

In complex tissue environments, cells constantly interact with dynamic chemical signals, many of which are…

May 27, 2025

Microfluidic model shows α‑Synuclein spreads backward along axons

Lewy bodies -intracellular aggregates rich in α‑Synuclein (αSyn)- appear in a stereotyped pattern as Parkinson’s…

May 3, 2025

AI-Enabled Microfluidic Device for Rapid CD4+ T Cell Counting in Whole Blood

CD4+ T cell counts are essential for diagnosing and monitoring diseases like HIV, cancers, and…

April 7, 2025