Latest Research

Screening paclitaxel-loaded capsules for tumor eradication using microfluidic channels

Abstract

“With the aim to locally enhance the efficacy of cancer nanotherapies, here we present metal iron based magnetoplasmonic drug-loaded nanocapsules (MAPSULES), merging powerful external magnetic concentration in the tumor and efficient photothermal actuation to locally boost the drug therapeutic action at ultralow drug concentrations. The MAPSULES are composed of paclitaxel-loaded polylactic-co-glycolic acid (PLGA) nanoparticles partially coated by a nanodome shape iron/silica semishell. The iron semishell has been designed to present a ferromagnetic vortex for incorporating a large quantity of ferromagnetic material while maintaining high colloidal stability. The large iron semishell provides very strong magnetic manipulation via magnetophoretic forces, enabling over 10-fold higher trapping efficiency in microfluidic channels than typical superparamagnetic iron oxide nanoparticles. Moreover, the iron semishell exhibits highly damped plasmonic behavior, yielding intense broadband absorbance in the near-infrared biological windows and photothermal efficiency similar to the best plasmonic nanoheaters. The in vivo therapeutic assays in a mouse xenograft tumor model show a high amplification of the therapeutic effects by combining magnetic concentration and photothermal actuation in the tumor, leading to a complete eradication of the tumors at ultralow nanoparticle and drug concentration (equivalent to only 1 mg/kg PLGA nanoparticles containing 8 μg/kg of paclitaxel, i.e., 100–500-fold lower than the therapeutic window of the free and PLGA encapsulated drug and 13–3000-fold lower than current nanotherapies combining paclitaxel and light actuation). These results highlight the strength of this externally controlled and amplified therapeutic approach, which could be applied to locally boost a wide variety of drugs for different diseases.

MAPSULES structural properties. (A) Schematic of the drug-loaded ferromagnetic nanocapsules components and their functionalities. (B) SEM image of the self-assembled PLGA nanoparticles capped with Fe (20 nm) and SiO2 (10 nm). (C) TEM images of the ferromagnetic nanocapsules after dispersion in water for 3 h. (D) High-magnification TEM image of the semishell to show the thickness of the Fe and SiO2 layers, and (E) EDX mapping at the energies corresponding to Fe and Si atoms.” Reproduced under a Creative Commons Attribution 4.0 International License from Arnon Fluksman, Aritz Lafuente, Zhi Li, Jordi Sort, Silvia Lope-Piedrafita, Maria José Esplandiu, Josep Nogues, Alejandro G. Roca, Ofra Benny, and Borja Sepulveda ACS Nano Article ASAP.


Figures and the abstract are reproduced from
Arnon Fluksman, Aritz Lafuente, Zhi Li, Jordi Sort, Silvia Lope-Piedrafita, Maria José Esplandiu, Josep Nogues, Alejandro G. Roca, Ofra Benny, and Borja Sepulveda ACS Nano Article ASAP DOI: 10.1021/acsnano.2c05733 under a Creative Commons Attribution 4.0 International License.


Read the original article:
Efficient Tumor Eradication at Ultralow Drug Concentration via Externally Controlled and Boosted Metallic Iron Magnetoplasmonic Nanocapsules

Pouriya Bayat

Published by
Pouriya Bayat

Recent Posts

Life Cycle Impacts of Scaling Magnetite Nanoparticle Production with Microfluidics

Magnetite nanoparticles (MNPs) have become valuable in areas ranging from environmental remediation and water treatment…

August 11, 2025

Enhancing mRNA-LNP Production with Optimized Microfluidic Baffles

Efficient delivery of RNA therapeutics hinges on the quality and consistency of lipid nanoparticles (LNPs)…

July 29, 2025

Modeling the Gut–Skin Axis: A Microfluidic Chip for Studying Microbe-Induced Skin Inflammation

Skin diseases like atopic dermatitis and psoriasis have been linked to gut health, yet the…

July 11, 2025

Microfluidics Reveal Iron Deficiency Leads to More Deformable Red Blood Cells

Red blood cell (RBC) deformability, the ability of RBCs to squeeze through tiny capillaries, is…

June 27, 2025

A Reconfigurable Microfluidic Platform for Sample-Efficient Antibody Fc Biomarker Discovery

Precise diagnosis of infectious diseases is often hindered by a lack of accessible biomarkers that…

June 17, 2025

Ultrafast and Scalable CAR-T Manufacturing Using Microfluidics

Chimeric antigen receptor T-cell (CAR-T) therapy has reshaped the treatment landscape for hematologic cancers, but…

June 12, 2025