Latest Research

Hydrogel beads as solid-phase protein displays for functional assays and protein engineering

Abstract

“The assembly of robust, modular biological components into complex functional systems is central to synthetic biology. Here, we apply modular “plug and play” design principles to a solid-phase protein display system that facilitates protein purification and functional assays. Specifically, we capture proteins on polyacrylamide hydrogel display beads (PHD beads) made in microfluidic droplet generators. These monodisperse PHD beads are decorated with predefined amounts of anchors, methacrylate-PEG-benzylguanine (BG) and methacrylate-PEG-chloroalkane (CA), that react covalently with SNAP-/Halo-tag fusion proteins, respectively, in a specific, orthogonal, and stable fashion. Anchors, and thus proteins, are distributed throughout the entire bead volume, allowing attachment of ∼109 protein molecules per bead (⌀ 20 μm) ─a higher density than achievable with commercial surface-modified beads. We showcase a diverse array of protein modules that enable the secondary capture of proteins, either noncovalently (IgG and SUMO-tag) or covalently (SpyCatcher, SpyTag, SnpCatcher, and SnpTag), in mono- and multivalent display formats. Solid-phase protein binding and enzymatic assays are carried out, and incorporating the photocleavable protein PhoCl enables the controlled release of modules via visible-light irradiation for functional assays in solution. We utilize photocleavage for valency engineering of an anti-TRAIL-R1 scFv, enhancing its apoptosis-inducing potency ∼50-fold through pentamerization.

 

Modular polyacrylamide hydrogel display. (a) Monodisperse polyacrylamide hydrogel beads are made through the encapsulation of monomers [(1) methacrylate-PEG-benzylguanine (BG), (2) methacrylate-PEG-chloroalkane (CA), (3) acrylamide, (4) bis-acrylamide] with polymerization-inducing catalysts using droplet-based microfluidics. Upon de-emulsification, BG (red) and/or CA (blue) are retained within each bead due to copolymerization with the hydrogel backbone. (b) Hydrogel beads can then be orthogonally functionalized with SNAP- or Halo-tag fusion proteins (red and blue, respectively) through covalent reaction with their respective copolymerized small molecule ligands (BG/CA).” Reproduced under Creative Commons Attribution 4.0 International License from Gigavalent Display of Proteins on Monodisperse Polyacrylamide Hydrogels as a Versatile Modular Platform for Functional Assays and Protein Engineering Thomas Fryer, Joel David Rogers, Christopher Mellor, Timo N. Kohler, Ralph Minter, and Florian Hollfelder ACS Central Science Article ASAP.


Figures and the abstract are reproduced from Gigavalent Display of Proteins on Monodisperse Polyacrylamide Hydrogels as a Versatile Modular Platform for Functional Assays and Protein Engineering Thomas Fryer, Joel David Rogers, Christopher Mellor, Timo N. Kohler, Ralph Minter, and Florian Hollfelder ACS Central Science Article ASAP DOI: 10.1021/acscentsci.2c00576

Read the original article: Gigavalent Display of Proteins on Monodisperse Polyacrylamide Hydrogels as a Versatile Modular Platform for Functional Assays and Protein Engineering

Pouriya Bayat

Published by
Pouriya Bayat

Recent Posts

Microfluidics Reveal Iron Deficiency Leads to More Deformable Red Blood Cells

Red blood cell (RBC) deformability, the ability of RBCs to squeeze through tiny capillaries, is…

June 27, 2025

A Reconfigurable Microfluidic Platform for Sample-Efficient Antibody Fc Biomarker Discovery

Precise diagnosis of infectious diseases is often hindered by a lack of accessible biomarkers that…

June 17, 2025

Ultrafast and Scalable CAR-T Manufacturing Using Microfluidics

Chimeric antigen receptor T-cell (CAR-T) therapy has reshaped the treatment landscape for hematologic cancers, but…

June 12, 2025

Compartmentalized perfusion enables precise control of microenvironments in cardiac microfluidics

In complex tissue environments, cells constantly interact with dynamic chemical signals, many of which are…

May 27, 2025

Microfluidic model shows α‑Synuclein spreads backward along axons

Lewy bodies -intracellular aggregates rich in α‑Synuclein (αSyn)- appear in a stereotyped pattern as Parkinson’s…

May 3, 2025

AI-Enabled Microfluidic Device for Rapid CD4+ T Cell Counting in Whole Blood

CD4+ T cell counts are essential for diagnosing and monitoring diseases like HIV, cancers, and…

April 7, 2025