Latest Research

Mass spectrometry and microfluidics meet to enable sensing of product formation

“Enzymes are represented across a vast space of protein sequences and structural forms and have activities that far exceed the best chemical catalysts; however, engineering them to have novel or enhanced activity is limited by technologies for sensing product formation. Here, we describe a general and scalable approach for characterizing enzyme activity that uses the metabolism of the host cell as a biosensor by which to infer product formation. Since different products consume different molecules in their synthesis, they perturb host metabolism in unique ways that can be measured by mass spectrometry. This provides a general way by which to sense product formation, to discover unexpected products and map the effects of mutagenesis.

“Enzyme variants are designed and transformed into yeast (design) and then synthesized in the yeast where they consume molecules of central metabolism to generate product (build). Using printed droplet microfluidics, they are dispensed to a picoliter well array and subjected to MALDI-MS imaging to quantify cell metabolites (test). UMAP clusters cells according to metabolomic profile, where each cluster indicates a different enzyme phenotype. Desired mutants are extracted from the plate, sequenced, and confirmed in bulk cultures.” Reproduced under Creative Commons Attribution 4.0 International License from Xu, L., Chang, KC., Payne, E.M. et al. Mapping enzyme catalysis with metabolic biosensing. Nat Commun 12, 6803 (2021).

 

Figures and the abstract are reproduced from Xu, L., Chang, KC., Payne, E.M. et al. Mapping enzyme catalysis with metabolic biosensing. Nat Commun 12, 6803 (2021). under Creative Commons Attribution 4.0 International License


Read the original article:
Mapping enzyme catalysis with metabolic biosensing

Pouriya Bayat

Published by
Pouriya Bayat

Recent Posts

Microfluidic control of time-varying stimuli reveals nuclear remodeling in NF-κB signaling

Understanding how cells decode signals from their environment is a central challenge in biology. One…

August 24, 2025

Microfluidic nano-plasmonic imaging platform for purification- and label-free single small extracellular vesicle characterization

The detection and analysis of small extracellular vesicles (sEVs), such as exosomes, has attracted significant…

August 24, 2025

Life Cycle Impacts of Scaling Magnetite Nanoparticle Production with Microfluidics

Magnetite nanoparticles (MNPs) have become valuable in areas ranging from environmental remediation and water treatment…

August 11, 2025

Enhancing mRNA-LNP Production with Optimized Microfluidic Baffles

Efficient delivery of RNA therapeutics hinges on the quality and consistency of lipid nanoparticles (LNPs)…

July 29, 2025

Modeling the Gut–Skin Axis: A Microfluidic Chip for Studying Microbe-Induced Skin Inflammation

Skin diseases like atopic dermatitis and psoriasis have been linked to gut health, yet the…

July 11, 2025

Microfluidics Reveal Iron Deficiency Leads to More Deformable Red Blood Cells

Red blood cell (RBC) deformability, the ability of RBCs to squeeze through tiny capillaries, is…

June 27, 2025