Latest Research

Microfluidic analysis of dynamic behaviors of cancer cells in response to mechanical stresses

Abstract

“Circulating tumor cells (CTCs) survive in the bloodstream and then seed and invade to foster tumor metastasis. The arrest of cancer cells is favored by permissive flow forces and geometrical constraints. Through the use of high-throughput microfluidic devices designed to mimic capillary-sized vessels, we applied pressure differences to cancer cells (MCF-7 cell line) and recorded the cell traverse-vessel behaviors. Our results showed that cancer cells transform from a Newtonian droplet state to an adhesion/migration state when cancer cells traverse artificial vessels. To explain these phenomena, a modified Newtonian droplet model was also proposed. These phenomena and the modified model may reveal how CTCs in the blood seed and invade vessels under suitable conditions.

The design principle of the microfluidic device and time-lapse microscopy images of two typical cells with different traverse-vessel behaviors. (A) Schematic diagram of the double-layer microfluidic chip with CO2 layer (blue) and cell cultivation layer (red) to maintain cell culture environment and culture cells. (B) A photograph of the microfluidic chip with CO2 layer (upper, blue) and cell cultivation layer (bottom, red). Scale bar: 1 cm. (C) Detailed schematic diagrams of the cell cultivation layer with Inlet, Filter, Trap Unit and Outlet. (D) Schematic illustration of experimental design in the research. (E,F) Time-lapse microscopy images and the protrusion length as a function of time for two typical cells under applied pressure difference ΔPΔP, 200 mbar and 100 mbar respectively. Scale bar: 20 μm. Reproduced under Creative Commons Attribution 4.0 International License from Li, X., Shi, J., Gao, Z. et al. Biophysical studies of cancer cells’ traverse-vessel behaviors under different pressures revealed cells’ motion state transition. Sci Rep 12, 7392 (2022).

 

Figures and the abstract are reproduced from Li, X., Shi, J., Gao, Z. et al. Biophysical studies of cancer cells’ traverse-vessel behaviors under different pressures revealed cells’ motion state transition. Sci Rep 12, 7392 (2022). https://doi.org/10.1038/s41598-022-11047-5 under Creative Commons Attribution 4.0 International License.


Read the original article:
Biophysical studies of cancer cells’ traverse-vessel behaviors under different pressures revealed cells’ motion state transition

Pouriya Bayat

Published by
Pouriya Bayat

Recent Posts

Microfluidics Reveal Iron Deficiency Leads to More Deformable Red Blood Cells

Red blood cell (RBC) deformability, the ability of RBCs to squeeze through tiny capillaries, is…

June 27, 2025

A Reconfigurable Microfluidic Platform for Sample-Efficient Antibody Fc Biomarker Discovery

Precise diagnosis of infectious diseases is often hindered by a lack of accessible biomarkers that…

June 17, 2025

Ultrafast and Scalable CAR-T Manufacturing Using Microfluidics

Chimeric antigen receptor T-cell (CAR-T) therapy has reshaped the treatment landscape for hematologic cancers, but…

June 12, 2025

Compartmentalized perfusion enables precise control of microenvironments in cardiac microfluidics

In complex tissue environments, cells constantly interact with dynamic chemical signals, many of which are…

May 27, 2025

Microfluidic model shows α‑Synuclein spreads backward along axons

Lewy bodies -intracellular aggregates rich in α‑Synuclein (αSyn)- appear in a stereotyped pattern as Parkinson’s…

May 3, 2025

AI-Enabled Microfluidic Device for Rapid CD4+ T Cell Counting in Whole Blood

CD4+ T cell counts are essential for diagnosing and monitoring diseases like HIV, cancers, and…

April 7, 2025