Latest Research

Microfluidic chip for delivering mRNA into human cells

“Messenger RNA (mRNA) delivery provides gene therapy with the potential to achieve transient therapeutic efficacy without risk of insertional mutagenesis. Amongst other applications, mRNA can be employed as a platform to deliver gene editing molecules, to achieve protein expression as an alternative to enzyme replacement therapies, and to express chimeric antigen receptors (CARs) on immune cells for the treatment of cancer. We designed a novel microfluidic device that allows for efficient mRNA delivery via volume exchange for convective transfection (VECT). In the device, cells flow through a ridged channel that enforces a series of ultra-fast and large intensity deformations able to transiently open pores and induce convective transport of mRNA into the cell. Here, we describe efficient delivery of mRNA into T cells, natural killer (NK) cells and hematopoietic stem and progenitor cells (HSPCs), three human primary cell types widely used for ex vivo gene therapy applications. Results demonstrate that the device can operate at a wide range of cell and payload concentrations and that ultra-fast compressions do not have a negative impact on T cell function, making this a novel and competitive platform for the development of ex vivo mRNA-based gene therapies and other cell products engineered with mRNA.

“Optimization of a microfluidic device for volume exchange for convective transfection (VECT) in human primary cells. (a) Top-view microscopic image of the device, showing the shape of the ridge elements across the channel. (b) Top, representation of the cross section highlighted in yellow in (a), depicting how the ridges are distributed along the channel. Bottom, representation of the mechanical processing experienced by the cells. (c) Fluidic simulation of the velocity of the liquid being run in a working device. (d) Gap size optimization for the transfection of GFP-encoding mRNA in T cells performed with devices ranging from 3.5 to 6 µm (Mean ± SD, n = 3). ” Reproduced under Creative Commons Attribution 4.0 International License. from Jocelyn Loo., et al. Microfluidic transfection of mRNA into human primary lymphocytes and hematopoietic stem and progenitor cells using ultra-fast physical deformations. Sci., Rep., 11, 21407 (2021)

 

Loo, J., Sicher, I., Goff, A. et al. Microfluidic transfection of mRNA into human primary lymphocytes and hematopoietic stem and progenitor cells using ultra-fast physical deformations. Sci Rep 11, 21407 (2021). under Creative Commons Attribution 4.0 International License


Read the original article:
Microfluidic transfection of mRNA into human primary lymphocytes and hematopoietic stem and progenitor cells using ultra-fast physical deformations

Pouriya Bayat

Published by
Pouriya Bayat

Recent Posts

Microfluidic confinement reveals how bacteria cross one-micrometer-wide passages by flagellar wrapping

Microfluidic devices are widely used to replicate the physical constraints bacteria experience in natural and…

February 3, 2026

Machine Learning Meets Microfluidics to Decode Tumor-Neuron Electrical Crosstalk

Understanding how brain tumors interact with surrounding neural circuits is a significant challenge in neuro-oncology.…

January 26, 2026

Rapid culture-free pathogen diagnosis using microfluidics and Raman spectroscopy

Timely identification of infectious pathogens remains a major bottleneck in clinical care, particularly in conditions…

January 15, 2026

Acoustic probing for rapid sickle cell disease screening using microfluidic biomarkers

Early diagnosis of sickle cell disease remains a major challenge, particularly in low-resource settings where…

January 5, 2026

Carbonate-Mimicking Microfluidic Platform for CO₂–Seawater–Concrete Flooding

Understanding the interplay between surface chemistry, pore geometry, and flooding fluids remains a central challenge…

December 22, 2025

Fractal Pore Structures Amplify Bacterial Growth in Soil-inspired Microfluidic Environments

Soil hosts dense and diverse microbial communities that drive major ecological processes, yet the way…

November 30, 2025