Latest Research

Microfluidic platform enables researchers to investigate the effect of spatial distortion on fungal and bacterial growth

“Microhabitat conditions determine the magnitude and speed of microbial processes but have been challenging to investigate. In this study we used microfluidic devices to determine the effect of the spatial distortion of a pore space on fungal and bacterial growth, interactions, and substrate degradation. The microfluidic devices contained channels differing in bending angles and order. Sharper angles reduced fungal and bacterial biomass, especially when angles were repeated in the same direction. Substrate degradation was only decreased by sharper angles when fungi and bacteria were grown together. Investigation at the cellular scale suggests that this was caused by fungal habitat modification, since hyphae branched in sharp and repeated turns, blocking the dispersal of bacteria and the substrate. Our results demonstrate how the geometry of microstructures can influence microbial activity. This can be transferable to soil pore spaces, where spatial occlusion and microbial feedback on microstructures is thought to explain organic matter stabilization.

 

Figures and the abstract are reproduced from Arellano-Caicedo, C., Ohlsson, P., Bengtsson, M. et al. Habitat geometry in artificial microstructure affects bacterial and fungal growth, interactions, and substrate degradation. Commun Biol 4, 1226 (2021). under Creative Commons Attribution 4.0 International License


Read the original article:
Habitat geometry in artificial microstructure affects bacterial and fungal growth, interactions, and substrate degradation

Pouriya Bayat

Published by
Pouriya Bayat

Recent Posts

Mapping the “Behaviorome” of Human Neutrophils in a Tumor-on-a-Chip System

Neutrophils, the most abundant immune cells in human blood, play a puzzling dual role in…

November 3, 2025

Microfluidic Mapping of the Molecular Aging of Protein Condensates

Biomolecular condensates, membraneless structures formed through phase separation of proteins and nucleic acids, play a…

October 7, 2025

A Modular Microfluidic Platform for Real-Time Biofilm Analysis

Biofilms, dense microbial communities on medical devices and tissues, are notoriously resistant to antibiotics, causing…

September 26, 2025

Microfluidic Nanoplasmonic Patch for Metabolite Profiling in Sweat

Tracking how our bodies respond to food, exercise, and stress requires tools that can capture…

September 19, 2025

Capillary Constrictions Can Prime Cancer Cell Tumorigenicity: A Microfluidic Study

Metastasis, the spread of cancer cells from primary tumors to distant organs, is responsible for…

September 18, 2025

Microfluidic Control of Time-varying Stimuli Reveals Nuclear Remodeling in NF-κB Signaling

Understanding how cells decode signals from their environment is a central challenge in biology. One…

August 24, 2025