Latest Research

Real-time precise microfluidic droplets label-sequencing

Droplets microfluidics is broadening the range of Lab on a Chip solutions that, however, still suffer from the lack of an adequate level of integration of optical detection and sensors. In fact, droplets are currently monitored by imaging techniques, mostly limited by time-consuming data post-processing and big data storage. This work aims to overcome this weakness, presenting a fully integrated opto-microfluidics platform able to detect, label and characterize droplets without the need for imaging techniques. It consists of optical waveguides arranged in a Mach Zehnder’s configuration and a microfluidic circuit both coupled in the same substrate. As a proof of concept, the work demonstrates the performances of this opto-microfluidic platform in performing a complete and simultaneous sequence labelling and identification of every single droplet, in terms of its optical properties, as well as velocity and lengths. Since the sensor is realized in lithium niobate crystals, which is also highly resistant to chemical attack and biocompatible, the future addition of multifunctional stages into the same substrate can be easily envisioned, extending the range of applicability of the final device.”

 

“Overview of the MZI integrated system. The picture in (a) is the final device with microfluidic circuit and MZI configuration, the sketch evidences the detection of MZI, which splits the light into two arms, both interacting separately with the microfluidic channel and droplets flowing inside. (b) and (c) report examples of the intensity signal collected at the output of the waveguide when droplets flow inside the microfluidic channel and interacts with light from branches 1 and 2.” Reproduced under Creative Commons Attribution 4.0 International License. Zamboni et al., Sci. Rep., 2021.

 

Figures and the abstract are reproduced from Zamboni et al.,  Sci. Rep., 2021 under Creative Commons Attribution 4.0 International License.

Read the original article: Real-time precise microfluidic droplets label-sequencing combined in a velocity detection sensor

Pouriya Bayat

Published by
Pouriya Bayat

Recent Posts

Microfluidic control of time-varying stimuli reveals nuclear remodeling in NF-κB signaling

Understanding how cells decode signals from their environment is a central challenge in biology. One…

August 24, 2025

Microfluidic nano-plasmonic imaging platform for purification- and label-free single small extracellular vesicle characterization

The detection and analysis of small extracellular vesicles (sEVs), such as exosomes, has attracted significant…

August 24, 2025

Life Cycle Impacts of Scaling Magnetite Nanoparticle Production with Microfluidics

Magnetite nanoparticles (MNPs) have become valuable in areas ranging from environmental remediation and water treatment…

August 11, 2025

Enhancing mRNA-LNP Production with Optimized Microfluidic Baffles

Efficient delivery of RNA therapeutics hinges on the quality and consistency of lipid nanoparticles (LNPs)…

July 29, 2025

Modeling the Gut–Skin Axis: A Microfluidic Chip for Studying Microbe-Induced Skin Inflammation

Skin diseases like atopic dermatitis and psoriasis have been linked to gut health, yet the…

July 11, 2025

Microfluidics Reveal Iron Deficiency Leads to More Deformable Red Blood Cells

Red blood cell (RBC) deformability, the ability of RBCs to squeeze through tiny capillaries, is…

June 27, 2025