Latest Research

Synthetic cytoskeletons made with DNA nanotechnology and droplet microfluidics

Abstract

“The cytoskeleton is an essential component of a cell. It controls the cell shape, establishes the internal organization, and performs vital biological functions. Building synthetic cytoskeletons that mimic key features of their natural counterparts delineates a crucial step towards synthetic cells assembled from the bottom up. To this end, DNA nanotechnology represents one of the most promising routes, given the inherent sequence specificity, addressability and programmability of DNA. Here we demonstrate functional DNA-based cytoskeletons operating in microfluidic cell-sized compartments. The synthetic cytoskeletons consist of DNA tiles self-assembled into filament networks. These filaments can be rationally designed and controlled to imitate features of natural cytoskeletons, including reversible assembly and ATP-triggered polymerization, and we also explore their potential for guided vesicle transport in cell-sized confinement. Also, they possess engineerable characteristics, including assembly and disassembly powered by DNA hybridization or aptamer–target interactions and autonomous transport of gold nanoparticles. This work underpins DNA nanotechnology as a key player in building synthetic cells.

Microfluidic device and droplet formation. a Layout of the microfluidic T-junction device for the encapsulation of the DNA filaments (supplied via the aqueous phase) into surfactant-stabilized water-in-oil droplets. The droplets are collected from the outlet for further imaging. The microfluidic PDMS devices (Sylgard184, Dow Corning, USA) have been fabricated according to a previously published protocol [2] (see Methods). b Bright-field high-speed camera image of a flow-focusing T-junction during the droplet formation. Scale bar: 50 µm.” Reproduced under Creative Commons Attribution 4.0 International License from Zhan, P., Jahnke, K., Liu, N. et al. Functional DNA-based cytoskeletons for synthetic cells. Nat. Chem. (2022).


Figures and the abstract are reproduced from
Zhan, P., Jahnke, K., Liu, N. et al. Functional DNA-based cytoskeletons for synthetic cells. Nat. Chem. (2022). https://doi.org/10.1038/s41557-022-00945-w under Creative Commons Attribution 4.0 International License.


Read the original article:
Functional DNA-based cytoskeletons for synthetic cells

Pouriya Bayat

Published by
Pouriya Bayat

Recent Posts

Microfluidic confinement reveals how bacteria cross one-micrometer-wide passages by flagellar wrapping

Microfluidic devices are widely used to replicate the physical constraints bacteria experience in natural and…

February 3, 2026

Machine Learning Meets Microfluidics to Decode Tumor-Neuron Electrical Crosstalk

Understanding how brain tumors interact with surrounding neural circuits is a significant challenge in neuro-oncology.…

January 26, 2026

Rapid culture-free pathogen diagnosis using microfluidics and Raman spectroscopy

Timely identification of infectious pathogens remains a major bottleneck in clinical care, particularly in conditions…

January 15, 2026

Acoustic probing for rapid sickle cell disease screening using microfluidic biomarkers

Early diagnosis of sickle cell disease remains a major challenge, particularly in low-resource settings where…

January 5, 2026

Carbonate-Mimicking Microfluidic Platform for CO₂–Seawater–Concrete Flooding

Understanding the interplay between surface chemistry, pore geometry, and flooding fluids remains a central challenge…

December 22, 2025

Fractal Pore Structures Amplify Bacterial Growth in Soil-inspired Microfluidic Environments

Soil hosts dense and diverse microbial communities that drive major ecological processes, yet the way…

November 30, 2025